Marked activation delay caused by ischemia initiated after regional K+ elevation in in situ pig hearts.
نویسندگان
چکیده
BACKGROUND Conduction mediated by the slow inward (Ca2+) current occurs in vitro under specific experimental conditions but has not been documented in ventricular muscle in vivo during regional myocardial ischemia, perhaps because certain constituents of ischemia (including hypoxia and acidosis) may inhibit the Ca2+ current in this setting. We hypothesized that slow conduction mediated by the Ca2+ current could occur during acute ischemia in situations in which the extracellular K+ rise was more marked relative to the degree of acidosis, as may occur at ischemic boundaries. METHODS AND RESULTS In open-chest, anesthetized swine, an arterial shunt from the carotid artery to the mid-left anterior descending coronary artery was created through which a solution of KCl was infused to raise extracellular K+ ([K+]e) to approximately 9.4 mmol/L before the initiation of ischemia, which we termed "K(+)-modified ischemia." Ischemia initiated at a normal [K+]e ("unmodified ischemia") resulted in a mean activation delay in the center of the ischemic zone of 55 +/- 26 milliseconds after 5 minutes of ischemia and a decrease in epicardial longitudinal conduction velocity from 53 to 21 cm/s before the onset of conduction block. K(+)-modified ischemia resulted in a mean activation delay in the center of the ischemic zone of 181 +/- 8 milliseconds and a decrease in epicardial longitudinal conduction to less than 10 cm/s. K(+)-modified ischemia was associated with ventricular fibrillation in 85% of episodes compared with 28% of episodes of unmodified ischemia (P < .01). Verapamil prevented the occurrence of marked activation delay during K(+)-modified ischemia, producing local activation block following a maximum activation delay of 74 +/- 25 milliseconds. In two experiments, responses mediated by the slow inward current were produced by regional K+ elevation to 15 to 16 mmol/L, followed by concomitant regional administration of epinephrine (10(-7) mol/L). Regional [K+]e elevation alone to this level resulted in local activation block following a maximum activity delay of 70 to 80 milliseconds, whereas administration of epinephrine in combination with high [K+]e resulted in return of local activation with an activation delay of 160 to 180 milliseconds (ie, similar to that during K(+)-modified ischemia). CONCLUSIONS Compared with unmodified ischemia, K(+)-modified ischemia resulted in marked activation delay and a high incidence of ventricular fibrillation. Based on measurements of longitudinal conduction velocity, the inhibitory effect of verapamil, and the results of experiments with high [K+]e plus epinephrine, we conclude that the marked activation delay during K(+)-modified ischemia represents conduction mediated by the slow inward current. Because the conditions produced by K(+)-modified ischemia (high [K+]e with minimal acidosis) are similar to conditions in and near ischemic border regions, we hypothesize that responses mediated by the slow inward current may occur in such regions during unmodified ischemia and may participate in the development of reentrant arrhythmias.
منابع مشابه
Marked Activation Delay Caused by Ischemia Initiated After Regional K ' Elevation in In Situ Pig
Background Conduction mediated by the slow inward (Ca2+) current occurs in vitro under specific experimental conditions but has not been documented in ventricular muscle in vivo during regional myocardial ischemia, perhaps because certain constituents of ischemia (including hypoxia and acidosis) may inhibit the Ca2' current in this setting. We hypothesized that slow conduction mediated by the C...
متن کاملReperfusion arrhythmias in isolated perfused pig hearts. Inhomogeneities in extracellular potassium, ST and TQ potentials, and transmembrane action potentials.
We recorded direct current electrograms and local [K+]o at multiple sites and transmembrane potentials at selected sites during reperfusion after 5 minutes and 10 minutes of regional ischemia in isolated perfused pig hearts. After 10 minutes of ischemia, the incidence of ventricular fibrillation (VF) was 38%. At 80-90 seconds after reperfusion, [K+]o was 0.8 mM less than in normal tissue in hal...
متن کاملTemporal differences in actions of calcium channel blockers on K+ accumulation, cardiac function, and high-energy phosphate levels in ischemic guinea pig hearts.
We investigated temporal differences in the protective action of three types of Ca2+ channel blockers in myocardial ischemia, focusing particularly on the blocking ability under depolarizing conditions. The effects of diltiazem, verapamil, and nifedipine on extracellular potassium concentration ([K+]e), acidosis, and level of metabolic markers were examined during 30-min global ischemia and pos...
متن کاملEffects of L-Carnitine on Cardiac Apoptosis in Ischemic- Reperfused Isolated Rat Heart
Carnitine is a vital biologic substance for transporting fatty acids into myocytes. It also facilitates fatty acids β-oxidation for energy production. In this study, effects of L-carnitine (L-Car) on apoptosis in the ischemic isolated rat heart were investigated. Male Sprague-Dawley rats were divided into four groups and anesthetized by sodium pentobarbital. The heart was removed and mount...
متن کاملComparison between the effects of L-Carnitine and Acetyl-L-Carnitine on myocardial infarction size in ischemic heart
Introduction: In the present study, potential differences between the effects of L-carnitine (LC) and acetyl-Lcarnitine (ALC) on ischemia/reperfusion (I/R)-induced myocardial infarction size were investigated. Methods: Male Wistar rats were randomly divided into five groups and then anesthetized by sodium pentobarbital. Hearts of the animals were removed and quickly mounted on a Langendorff ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 90 6 شماره
صفحات -
تاریخ انتشار 1994